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Magnetic resonance (MR) imaging has become established as a diag-
nostic and research tool in many areas of medicine because of its ability
to provide excellent soft-tissue delineation in different areas of interest.
In addition to T1- and T2-weighted imaging, many specialized MR
techniques have been designed to extract metabolic or biophysical in-
formation. Diffusion-weighted imaging gives insight into the move-
ment of water molecules in tissue, and diffusion-tensor imaging can
reveal fiber orientation in the white matter tracts. Metabolic informa-
tion about the object of interest can be obtained with spectroscopy of
protons, in addition to imaging of other nuclei, such as sodium. Dy-
namic contrast material–enhanced imaging and recently proton spec-
troscopy play an important role in oncologic imaging. When these
techniques are combined, they can assist the physician in making a di-
agnosis or monitoring a treatment regimen. One of the major advan-
tages of the different types of MR imaging is the ability of the operator
to manipulate image contrast with a variety of selectable parameters
that affect the kind and quality of the information provided. The ele-
ments used to obtain MR images and the factors that affect formation
of an MR image include MR instrumentation, localization of the MR
signal, gradients, k-space, and pulse sequences.
©RSNA, 2007
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Introduction
Magnetic resonance (MR) imaging has been well
established as both a diagnostic and research tool
in many areas of medicine because of its ability to
provide excellent soft-tissue delineation of differ-
ent areas of interest. For example, in the brain,
T1- and T2-weighted MR imaging has evolved to
be the standard of reference for anatomic defini-
tion. These sequences derive image contrast from
the spin density in water and fat and from the MR
relaxation parameters T1 and T2. Unfortunately,
the water and fat spin densities yield only limited
information and present difficulty in separating
adipose tissue from nonadipose tissue unless fat
saturation is employed. These relaxation parame-
ters can be used in a wide variety of T1- and T2-
weighted sequences to optimize contrast for spe-
cific diagnostic purposes. For example, T2 pro-
vides information about edema within the brain.

The link between the differences in T1 and T2
and the physiology of the various tissues, and,
more important, the physiology of diseased tissue,
is not always clear. Altering the MR image con-
trast with an intravascular contrast agent typically
reveals physiologic changes in tissue that are rel-
evant to disease processes. For example, contrast
agents, such as gadolinium, administered to the
bloodstream create more contrast in highly vascu-
lar regions and are retained in regions where the
permeability of the interstitial space has changed.
These types of changes in vascularity or tissue
permeability occur in a variety of diseased tissues,
such as malignant tumors and myocardial ischemia.

MR imaging plays an increasingly important
role in radiologic imaging of different pathologic
disorders, where the goal is developing radiologic
imaging markers for noninvasive prediction of
disease and response to treatment. For example,
MR imaging used in oncologic imaging consists
of anatomic T1- and T2-weighted sequences,
dynamic contrast material enhancement (1,2),
or MR spectroscopy in the brain (3–7), breast
(8–13), and prostate (14,15). Dynamic contrast
enhancement with gadolinium yields information
on the vascular status of a lesion, and MR spec-
troscopy probes the intracellular (eg, choline,
creatine) environment of tissue (16). When these
sequences are combined, they can assist the phy-
sician in making a diagnosis or monitoring a treat-
ment regimen.

One of the major advantages of the different
types of MR imaging is the ability of the operator
to manipulate image contrast with a variety of
selectable parameters that affect the kind and
quality of the information provided. Therefore,
this article reviews the elements that are used to
obtain MR images and the factors that affect the
formation of an MR image—specifically, instru-
mentation, localization of the MR signal, gradi-
ents, k-space, and pulse sequences—as well as
emerging applications in high-field-strength MR
imaging (17–22).

MR Instrumentation
The generation of MR images requires a sophisti-
cated combination of electronics, radiofrequency
(RF) generators, coils, and gradients that inter-
face with a computer for communication between
the different electronics. This combination of
equipment allows localization, excitation, and
acquisition of a specific tissue of interest and for-
mation of a digital image. There are two groups of
equipment that are combined to form the MR
system. The first group is a command and control
center, that is, the computer, interface, and data
storage. The second group is specialized equip-
ment that generates and receives the MR signal,
that is, the magnet, gradients, and RF coils. This
article gives only a brief introduction; the reader is
referred to several references (23–29) and excel-
lent textbooks (30–38) for a more detailed expla-
nation of these topics.

Magnets
The magnet provides the “external” magnetic
field in which the patient or object is placed, and
its performance requirements are usually defined
in terms of field strength, stability, and homoge-
neity (34,39). There are three types of magnets
that can be used in MR imaging: permanent, re-
sistive, and superconducting.

Permanent Magnets.—Permanent magnets
exploit the ferromagnetic properties of the metal
used (eg, iron, nickel, or other metals). They are
configured differently from resistive and super-
conducting magnets. Specifically, the main mag-
netic field (B0) of a permanent magnet is perpen-
dicular to the object of interest, and early perma-
nent magnets were very heavy (5–100 tons).
However, newer versions are lighter and are
sometimes used for limited clinical applications
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such as open magnets. Advantages of permanent
magnets are that they require no cooling or power
to run and thus are cheaper than the other mag-
nets. However, they cannot be turned off in emer-
gencies and have less field homogeneity (34,38).

Resistive Magnets.—Recall that when an elec-
tric current flows through a wire, a magnetic field
is induced around the wire based on the Maxwell
equations; this principle is used for construction
of a resistive magnet. Resistive magnets require
cooling and power to operate but can be turned
off and on (31–34). Their field strengths range
from 0.1 T to 0.3 T, and they have the disadvan-
tages of poor homogeneity and high electrical
costs (34–36,38). Also, the object of interest lies
parallel to the B0 field, and the usual application
is similar to that of permanent magnets in the
“open magnet” configuration.

Superconducting Magnets.—Superconducting
magnets are based on the principle of cooling
down ("4°K) certain metal conductors so that
there is little or no resistance; therefore, a high
electric current can be used to generate high-
strength magnetic fields (Maxwell equation) with
no major heat disposition. However, in order to
achieve small electrical resistance, expensive cool-
ing cryogens (usually liquid helium) are used (31–
34). Currently, most clinical systems use super-
conducting magnets with field strengths of 0.5–3
T, with most field strengths on the order of 1.5–3
T. Research magnets (clinical or experimental)
can have field strengths of 4–9.4 T (17–21).

Field Strength
The field strength of an MR system is a major
determinant of the image contrast due to the en-
ergy exchange between the protons (water) and
their environments. These interactions are gov-
erned by the magnetic moments of the protons, in
particular the longitudinal relaxation parameter
T1 (discussed later) (29,30). The time required
for complete relaxation differs for different field
strengths; for example, the T1 is shorter at lower
field strengths and tends to increase at higher field
strengths (29,30). These changes affect both the
signal- and contrast-to-noise ratios of MR images
(discussed later) (39–41).

The units of field strength of an MR system are
tesla or gauss, with 1 T equal to 10,000 G. As
discussed earlier, the range of magnetic field

strength is variable, from low (0.1–0.5 T), me-
dium (0.5–1.0 T), or high (1.5 T) to ultrahigh
(3.0 T or greater) (29,33,42). Although there
have been vast technological advances in MR im-
aging over the past 40 years, the central principle
for advancing the MR imaging technology has
been based on finding ways to increase signal-to-
noise ratio (SNR) (40,41) in the MR image or
spectra. The most fundamental approach to
boosting SNR has been to increase the field
strength of the MR magnets. As a result, human
MR imaging is currently performed at field
strengths reaching 4 T (17), 7 T (21,43), 8 T
(44,45), and 9.4 T (46).

Shim and Gradient Coils
The localization of the MR signal depends on
good local homogeneity (shim) of the magnetic
field and variation (gradient) of the magnetic field
in three different directions. This is accomplished
by using both shim and gradient coils with the
magnet. Basically, a shim or gradient coil is a de-
vice that can generate a spatially localized mag-
netic field within the main B0 field by using elec-
tric current. Physically, the shim and gradient
coils are placed concentric to each other in the
magnet and activated at specific times of the pulse
sequence.

Shim Coils.—The quality of the received signal
requires good field homogeneity and thus re-
quires a shim of the local magnetic field, which is
the B0 field along the z direction. When an object
is placed in the main B0 field, it creates local sus-
ceptibility effects, and these susceptibility effects
need to be corrected. Shim coils (also known as
correction coils) are used to adjust or “shim” B0
magnetic field inhomogeneities and are very im-
portant for the quality of the received signal
(33,34,36–38). The shim coils can be passive or
active, depending on the configuration of the
magnet. Passive shim coils are usually configured
at the time of installation of the magnet by using
metal plates within the bore or surface of the
magnet. Active shim coils require electric current
through special coils and provide additional
“shimming” around the object of interest. Most
clinical and research systems use both passive and
active shims for control of the local magnetic
field.
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Gradient Coils.—Gradient coils are used for
localization of the MR signal in three directions
(x, y, and z) by using a controlled linear variation
(changing) of the B0 magnetic field with distance
(24,33,34,36–38). This linear variation of the
magnetic field allows spatial localization of the
MR signal. These coils lie concentric to each
other and are used to obtain the MR images. Im-
portant parameters for gradient specification are
the amplitude, rise time, and slew rate of gradient
systems. The amplitude or gradient strength is
defined as tesla per meter or gauss per centimeter,
with 10 mT/m ! 1 G/cm. The rise time (in milli-
seconds) is how long it takes for the gradient sys-
tem to reach its maximum strength. The slew rate
of a gradient system (in tesla per meters per sec-
ond) is defined as the ratio of gradient strength
divided by the rise time. A typical gradient coil set
is shown in Figure 1. The gradients are very im-
portant in imaging quality and image formation
and are discussed further later in this article.

RF Coils
The RF coils are used for two purposes: to trans-
mit the RF energy to the tissue of interest and to
receive the induced RF signal from the tissue of
interest. They are placed concentric to each other
and to the gradient coil system. RF coils are the
“antenna” of the MR imaging system. There are

several different types of RF coils. Some are
transmit or receive only or a combination of both
transmit and receive. The type of coil is governed
by the desired application, and the RF coil con-
figuration can be varied; usual designs are sur-
face, saddle, quadrature, or phased array (mul-
tiple elements). These coils can be designed for
the brain, breast, or other body organs.

Therefore, the RF signal is generated by a
transmit RF coil and applied to an area of inter-
est, and the output signal is picked up by the RF
receive coil and transmitted to an RF amplifier for
reconstruction of the image in the main computer
(23). However, with the increase in magnetic field
strength ("7 T), the principles of building RF
coils will change due to the interaction of the
magnetic field with the electric field as deter-
mined by the Maxwell equations (discussed
later).

Multiple RF Coils.—So far, we have discussed
the use of only single RF coils. However, use of a
greater number of coil elements (or channels) has
led to recent technological advances in pulse se-
quence design and image processing by using par-
allel imaging methods (simultaneous acquisition
of spatial harmonics [47] or sensitivity encoding
[48]). These methods have resulted in reduced
imaging time but also in a decrease in SNR and
are discussed later in this article.

Figure 1. Typical gradient coil set
used for localization of the MR sig-
nal. These coils are placed concen-
trically to each other within the mag-
net and are used sequentially for
three-dimensional localization of the
gradients to create images from the
MR signal.
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High-Field-Strength RF Coils and Field Dis-
tribution.—Higher field strengths correspond to
increased operational frequencies, where the
wavelengths of the electromagnetic waves pro-
duced by currents on RF coils or arrays become
on the order of the size of the human head or
body, which will result in inhomogeneous B1 field
(further subdivided into B1# and B1$) distribu-
tions in biologic tissues. Both of these fields can
have a devastating effect on the integrity of the
images and on the safety of the patient. Demon-
stration of these issues is presented in Figure 2,
where comparisons between experimental and
simulated low- and high-flip-angle images and
transmit and receive fields for a coil loaded with a
head-sized sphere filled with homogeneous saline

are shown at 8 T (45). These results demonstrate
the complexities and inhomogeneities of the B1#
and B1$ field distributions, which can lead to
asymmetric and distinctive high-power images
even though the coil, load, and excitation possess
physical symmetry (45). However, high resolu-
tion within the brain can be achieved, as demon-
strated in Figure 2b.

Localization of the MR Signal

Background
When a subject or object is placed into a magnetic
field, the protons align to the main field (B0) in
the z direction and the Larmor frequency is field
dependent (eg, Larmor frequency % ! & B0,
where & ! 42.6 MHz/T and is called the gyro-
magnetic ratio). Localization of the MR signal is
obtained by applying a gradient that produces a
controlled linear spatial variation of the B0 mag-
netic field (z direction), which creates small per-
turbations to the field in three directions (x, y,
and z) (Fig 1). This linear magnetic field gradient
is defined as any linear, spatial variation of the
magnetic field in the z direction in any of the
three directions. Usually, the gradients vary in a
linear manner over the field of view (FOV) and
are defined as the rate of change of the magnetic
field (B) in the direction of interest. In all, the
gradients perform three functions: slice selection
(z component), frequency encoding (x compo-
nent), and phase encoding (y component).

Note that each gradient is generated by a sepa-
rate concentric coil (Fig 1). Typical gradient sys-
tem values range from 20 to 80 mT/m (1.5 T and
3 T) with increased slew rates from 30 to 220
mT/m/msec, where the slew rate is defined as the
maximum gradient divided by the rise time. (The
rise time is how long it takes for the gradient to go
from zero to the maximum value.)

The linear dependence of the magnetic field Bi
depends on the location within the magnet and is
defined by the following equation:

B i ! B0 " G " ri , (1)

where Bi ! the magnetic field at ri and G is the

Figure 2. (a) Low- and high-flip-angle (arrows) im-
ages and measured transmit and receive fields obtained
by using an 8-T system (top row) and corresponding
simulated results obtained at 340 MHz by using com-
putational electromagnetics (bottom row) (49). (b) In
vivo 2000 ' 2000 image of the human brain obtained
at 8 T with 100-(m resolution (20). High-field-
strength magnets are increasingly being used in MR
imaging research centers throughout the world.
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total gradient in the chosen direction. For ex-
ample, the linear dependence in the x direction is
as follows:

Bx ! B0 " G " rx . (2)

The variation in Larmor frequency, which is
the resonant frequency, caused by application of
the gradient is defined by the following equation:

% i ! %0 " &G " ri , (3)

where %i is the Larmor frequency of interest, %0 is
the resident frequency, & is the gyromagnetic ra-
tio, G is the gradient, and ri is the direction. For
example, application of the gradient in the x di-
rection (usually the read direction) has the follow-
ing result:

%x ! %0 " &G " rx . (4)

These changes in the frequency direction are re-
corded for reconstruction of the image.

Slice-Selection Gradient.—A slice-selection
gradient (Gz or GSS) determines the amount of
tissue (slice) to be excited by using an RF pulse
with a fixed bandwidth that is applied in the pres-
ence of a slice-selection gradient. The slice-selec-
tion gradient creates a one-to-one correspon-
dence between the bandwidth of the RF pulse
and a narrow “slice” of tissue that is to be excited.
This RF pulse is called a B1 field and is applied in
the presence of B0, so that all spins (protons) are

at the same resonance frequency and the excita-
tion is nonselective (31,37). The parameters that
determine the slice thickness are the bandwidth
of the RF pulse () f ) and the gradient strength
across the FOV (Gz), as shown in Figure 3. In
general, larger gradients will give thinner slices
and smaller gradients will give thicker slices.

Frequency-Encoding or Readout Gradi-
ent.—The frequency-encoding gradient (Gx or
Greadout), commonly referred to as the readout
gradient, is applied perpendicular to the slice-
selection gradient before and during the echo for-
mation (24). The protons are spatially “frequency
encoded” by their characteristic resonant fre-
quency along the x axis. The readout gradient is
used to frequency encode the spectrum of fre-
quencies from the object that have been created
by the presence of the frequency-encoding gradi-
ent. Thus, the MR signal is always acquired dur-
ing the readout gradient (Fig 4).

Phase-Encoding Gradient.—The phase-en-
coding gradient (Gy or GPE) is applied along the
third perpendicular axis after the slice-selection
gradient and before the readout gradient (33,34,
36,37,50,51). The phase variations occur after
the initial excitation, as they begin to dephase
along the applied gradient. The phase gradient
induces a linear variation of the phase of the mag-
netization across the image (31,37). The protons
will have different phase depending on where they
are located; for example, usually positive phase
changes occur with a higher magnetic field,
whereas negative phase changes are associated
with a weaker magnetic field (Fig 5). Notably,

Figure 3. Slice selection by using the slice-selection gradient with a B0 field gradient and a
frequency-selective RF pulse.
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most artifacts occur in the phase direction due to
the longer acquisition time of the phase-encoding
steps (from about 100 msec to seconds) (52).

By combining the frequency- and phase-en-
coding gradients, each pixel will have a distinct
frequency and phase associated with it. This al-

lows creation of an image of the object by using
mathematical methods. By combining all these
steps into a pulse sequence, we can generate an
MR image (Fig 6).

Figure 4. Readout gradient for three discrete frequencies associated with three positions
and their summed signal. Also shown are the actual readout signal, which is the sum of sig-
nals at all frequencies within the bandwidth (BW), and the fast Fourier transform (FFT) of
this signal, which is a projection of the object along the frequency-encoding axis.

Figure 5. Phase encoding. The
readout experiment shown in Figure 4
is repeated N times (N is the desired
image resolution) with a short gradient
pulse of amplitude GPE(k) and length
tPE preceding readout. This gradient
pulse temporarily changes the fre-
quency; after period tPE, the result is a
phase shift )(k,r). If the gradient pulse
amplitude GPE(k) or length is varied
in N equal steps, the resulting set of
phase-encoded profiles (after the fast
Fourier transform of the readout di-
rection) will be the Fourier transform
of the object along the phase-encoding
direction.
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MR Signal (T1 and T2)
The mechanism for contrast in an MR image is
governed by the application of an RF pulse and,
more important, the relaxation times of the tissue
of interest, in particular T1 and T2. After the RF
pulse, an MR signal is created. This MR signal is
defined by a phenomenological equation called
the Bloch equation (53,54). The Bloch equation
can be solved for T1 and T2 for a spin-echo se-
quence:

M*t+ ! M0*1 # e($t/T1)+ (5)

and

Mxy*t+ ! Mxye($t/T2). (6)

From these equations, we can see that MR pixel
intensity is proportional to the number of protons
within the tissue, T1, and T2. The reader should

consult the references for derivation of the Bloch
equation; it is beyond the scope of this article.

T1 is the longitudinal relaxation time. This
occurs after application of a 180° RF pulse, where
the magnetization vector is inverted. Then a re-
covery process occurs. T1 weighting of the image
is dependent on the amount of TR in millisec-
onds between the slice selection and RF pulses
and the field strength. For example, in a spin-
echo sequence (23), the TR is the amount of time
between two successive 90° pulses, which affects
the longitudinal relaxation time. In general, fatty
tissue (short T1) is bright on a T1-weighted im-
age, and water (or spinal fluid) is dark (long T1).
Tissues that are solid have an intermediate T1
signal and may appear isointense (Fig 7).

Conversely, T2 is called the transverse relax-
ation time and pertains to a decay process. T2-
weighted images are dependent on the amount of
TE in milliseconds. The TE is defined as the time
of the echo. This occurs after a short waiting pe-
riod (TE/2), in which a 180° pulse in a spin echo
is applied and an echo is formed. In contrast to
T1-weighted images, water is bright (long T2) on

Figure 6. Four basic factors
determining the pixel bright-
ness of an MR image. 1, Ap-
plication of each gradient for a
voxel density (,) for localiza-
tion of the MR signal. RES !
resolution. 2, Use of the RF
pulse to invert the magnetiza-
tion signal within the voxel
(,). Note that - ! time of the
RF pulse and area covered by
the pulse (eg, the strength of
the pulse). M ! magnetiza-
tion. 3, Graphic representa-
tion of the relaxation parame-
ter T1. TR ! repetition time.
4, Graphic representation of
the relaxation parameter T2.
TE ! echo time.
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Teaching PointT2-weighted images are dependent on the amount of TE in milliseconds.



T2-weighted images, fatty tissue (intermediate
T2) is generally isointense, and tissues that are
solid have a short T2 signal and may appear hy-
pointense (depending on the TE). In terms of
tissue relaxation times, T1 is greater than T2 for
different tissues. In summary, T1-weighted im-
ages have a short TR and short TE (eg, 700/20
msec), while T2-weighted images have a long TR
and long TE (eg, 2000/80 msec).

Basic MR Sequences
There are two basic MR sequences that are fre-
quently used for MR imaging: spin-echo or gradi-
ent-echo techniques (23,55). They differ by the
number of RF pulses and the use of gradient re-
versals to produce an echo. Spin-echo sequences
use a 90° RF pulse followed by a 180° RF pulse
to generate the spin echo. Conversely, in gradi-
ent-echo methods, a single RF pulse (flip angle) is
used to invert the longitudinal magnetization,

then the gradient changes from negative values
and/or to positive values (gradient reversals).
These gradient reversals cause phase dispersion
followed by rephasing of the spins, which forms
an echo (55).

What Is k-Space?
The data obtained from the gradients (read and
phase) are stored in a “matrix format” that con-
tains all the pertinent information (eg, localiza-
tion, frequency, and phase of each pixel location).
In this matrix, different locations have varying
amounts of signal information that is present in
the reconstructed image. For example, in typical
objects, high-signal information is concentrated
in the center and low-signal information in gen-
eral is near the peripheral sections (which define
the edges). This can be demonstrated by taking

Figure 7. T1-weighted images (T1WI), T2-weighted images (T2WI), and diffusion-weighted images (DWI) from
different regions of the body with corresponding maps of the apparent diffusion coefficient (ADC) of water. Top:
Brain images of a patient with an acute stroke (.6 hours) and older infarct (/3 months). The regions of infarction
are clearly visualized on the T1- and T2-weighted images as low (T1) and high (T2) signal intensity in the left tem-
poral lobe (open arrow). Conversely, in the right occipital lobe, there is little or no change in the regions of new isch-
emia, except that they are seen as hyperintense areas on the diffusion-weighted image (single solid arrow). On the
ADC map, there are corresponding hypointense regions (double solid arrow), which have lower ADC values. Areas
that are hyperintense on the ADC map have higher ADC values. Similar signal intensities are noted on images of the
breast (middle) and uterus (bottom). Note the changes (arrow in bottom row) on the diffusion-weighted image of the
uterus, with decreased signal intensity in the same regions on the ADC map. Similar changes are seen on the breast
images (arrow in middle row). These examples demonstrate the versatility of MR imaging in producing different im-
age contrasts.
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regions of the k-space out and then using math-
ematical transforms on the “intact” k-space to
reconstruct the image (Fig 8). The matrix forma-
tion can be viewed in what is termed “k-space
formalism” or “reciprocal space” (36,38,51,57,
58). Formally, k-space is defined as an array of
“complex” data points (kx and ky) in multidimen-
sional space (eg, two-dimensional, three-dimen-
sional).

We define the signal equation as follows
(33,36,57):

s*t+ 0 ! ,*e$TE/T2+*1 # e$TR/T1+, (7)

where , ! proton density. Thus, we can image
tissue using different tissue contrast–based appli-
cations and manipulations of the T1 and T2 char-
acteristics. After application of each gradient
(read and phase), we have a matrix of points in
k-space or data space. This set of data has units of
time and is sometimes referred to as the time do-
main.

Knowing the relationship between the FOV
and gradient direction, we can relate this to the
change in k-space as shown below. Recall that
FOV is defined as the bandwidth divided by the
gradient times the gyromagnetic ratio:

FOV !
BW
&G . (8)

Now we know that the bandwidth is defined as
follows:

BW !
1

)T , (9)

where )T is the sampling rate. Therefore, by
combining the two equations, we see the follow-
ing relationship:

FOV !
BW
&G !

1
&G)T . (10)

The units are distance (millimeters or centime-
ters).

Now we can define the following relationship:

)k ! &Gi)ti; i ! x,y. (11)

Thus, there is a direct correspondence between
the FOV and gradient direction. We can relate
this to the change in k-space as follows:

FOV !
1

&G)Tf &G)T !
1

FOV

f )k !
1

FOV
. (12)

The units of )k are cycles per distance and are
called the spatial frequency. Therefore, changes
in the FOV are inversely proportional to the spa-
tial frequency of k-space (38).

The traversal of k-space is dependent on the
amplitude and timing of the gradients during an
MR acquisition. By using mathematical opera-
tions, we can transform k-space (spatial frequency
domain) into the image domain and create an
image. Thus, we can define a practical use for the

Figure 8. Effects of removing k-space data on a re-
constructed phantom image. In A, image was obtained
with full k-space. In B, image obtained with the center
of k-space missing shows only edges and fine detail,
which are defined by high-frequency k-space. In general,
the maximum signal is obtained from the center of k-
space. In C, image obtained with only the outer portion
of central k-space removed is blurred and lacks detail.
In B and C, note that removal of portions of k-space
leads to ringing artifacts in the image (56).
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k-space equation in terms of the gradients (read
and phase) used in MR imaging as follows
(36,38):

ky ! &*Gphase encode " tphase encode+ (13)

and

kx ! &*Greadout " treadout+, (14)

where tphase or tread is the cumulative time for each
gradient (36).

Basically, for a gradient-echo sequence, after
the image sequence is executed, the regions of

k-space are filled and details of certain features
within the image can be visualized. The phase
gradient moves the k-space vector through the
trajectory from a starting point (0,0). Then, the
read gradient transverses the region of k-space
during the signal acquisition (eg, right to left, cir-
cular) in the kx direction, whereas the phase gra-
dient moves the ky. These movements in k-space
are collected into a data matrix, then a math-
ematical Fourier transform is applied to the data
matrix to form an image (Fig 9) (31,57). Because
of this knowledge, k-space acquisitions can be
tailored for quicker acquisition by relying on the
periodic nature of k-space, such as partial k-space
acquisitions. These regions in k-space have spe-
cific properties: for example, in the typical object,
the center of k-space determines much of the con-
trast in the image, whereas the outer regions of
k-space determine capacity to image sharp edges
and determine image resolution. By removing
portions of the data, changes in the image can be
seen (Fig 8).

This type of information is useful when looking
for artifacts. Artifacts are caused by changes in
the phase of the signal during the phase-encoding
gradient (57,58), typically seen in areas of flow,
motion, B0 inhomogeneities, and chemical shift of
protons (eg, fat and water). More detailed infor-
mation about k-space can be found in references
38, 51, 57, and 58.

Parallel Imaging
Parallel imaging is a relatively new area of MR
imaging and is quickly becoming a routinely used
tool for decreasing imaging times in the clinical
setting (59). Parallel imaging methods are based
on the deployment of several RF coils (phased
array) to “speed up” the acquisition of the MR
signal, that is, to reduce the number of phase-
encoding steps, because the imaging time re-
quired for each acquisition is proportional to the
number of phase-encoding steps. The accelera-
tion or reduction factor is called R and is usually
set at 2 or 3, but this also reduces the FOV in the
phase direction and leads to aliasing of the object,
which is corrected by using B1 coil sensitivity
maps. This concept was suggested by Hutchinson
and Raff (60) and later by other investigators
(61,62).

Figure 9. Path through k-space of a gradient-
echo sequence with phase encoding. Sequence
diagram shows the excitation pulse and signals
RF, the readout gradient GR, and the phase-en-
coding gradient GP. The prewinding gradient A
carries the k-space trajectory in the kx direction
out of the sampling area. Phase encoding with B
causes an offset of the trajectory in the ky direc-
tion, where signal from one k-line is read out un-
der C. Data are acquired only during the last part
(solid line in the trajectory), and signal during A
and B is discarded (dashed line). The experiment
is repeated with different B until all k-lines have
been acquired (58).
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Sodickson and Manning (47) introduced par-
allel imaging into practice by using simultaneous
acquisition of spatial harmonics (SMASH).
Briefly, SMASH acquires a reduced set (deter-
mined by the R factor) of phase encodes in
k-space. The R factor is defined as increasing the
distance between lines of ky with the spatial reso-
lution at a fixed number. This leads to a reduc-
tion in imaging time. R is also known as the accel-
eration factor, and typical factors used are 2–3.
But, with a reduction in the number of phase-
encoding lines, there is a decrease in the FOV,
which leads to “wraparound” or aliasing of the
object. Then, B1 coil sensitivity profiles are gener-
ated and basis sets are used to approximate the
missing phase-encoding lines before application
of the Fourier transform to obtain an unaliased
image. This requires linear combinations of B1
coil sensitivity profiles to obtain the spatial har-
monics.

In contrast, Pruessmann et al (48) introduced
sensitivity encoding (SENSE) as an alternative
approach for SMASH parallel imaging. In
SENSE imaging, the B1 sensitivity profiles of
each coil are used to “unwrap” the image after the
Fourier transform, and this is performed in the
image domain. However, there is an SNR cost
with the reduction of imaging time, that is, lower
SNR in the image. In SENSE imaging, this re-
duction of SNR is about the square root of R and
is called the geometry factor, g, which represents
the noise magnification after unwrapping (37,48).

The reader is referred to the references for
more in-depth detail about each method (37,
47,48). Applications of these methods are cur-
rently increasing due to improved and greater
numbers of channels in the RF coils (63). This
will lead to a reduction of imaging time (37) and
reduced artifacts in echo-planar imaging (64) and
is an active area of research.

Contrast Mechanisms
and MR Imaging Parameters
The contrast between different tissues in the MR
image is defined by a complex interaction be-
tween several user-defined and tissue-of-interest
variables; these are commonly referred to as in-
trinsic and extrinsic variables (29,33,34,36,39).
The SNR is a major determinant of whether there
is sufficient signal to differentiate between differ-
ent tissue types. SNRs are calculated by using the
following equation:

SNR 0 *volume+"
#PE " NEX

BW
, (15)

where PE is the number of phase-encoding steps,
NEX is the number of signals acquired, and BW
is the bandwidth (29,39,65,66).

The signal intensity depends on several param-
eters that are basic to any MR sequence. For ex-
ample, some MR parameters are TE, TR, flip
angle (-)—the angle to rotate (or tip) the magne-
tization vector from the main B0 field onto the
transverse plane (5°–90°)—slice thickness, and
FOV (33,34,36). The amount of TR and TE de-
termines the amount of T1 or T2 weighting for
the images, respectively, whereas the slice thick-
ness governs the amount of protons available in
the tissue to image; for example, larger slices have
better SNR than thinner slices but have increased
partial volume effects (33,34,36). For instance, in
spin-echo sequences, T1-weighted images usually
have short TR (to maximize T1 differences in
tissue) and short TE (to minimize T2 effects),
whereas T2-weighted sequences have long TR
(1500 msec) and TE (/80 msec). Therefore, the
investigator can change the MR parameters (eg,
TR, TE) as needed for the desired application
(29,39).

Selected Applications
The real power of MR imaging lies in the wide
range of applications for which it can be used.
Current applications include soft-tissue delinea-
tion, determining extent of disease, tumor stag-
ing, functional and metabolic information, and
monitoring response to treatment. Some of these
newer applications are outlined herein.

T1- and T2-weighted Imaging
T1- and T2-weighted imaging are the most
widely used sequences for soft-tissue delineation
of anatomic structures and related pathologic
conditions (Fig 7). For example, in the brain, T2-
and T1-weighted imaging with or without con-
trast material can be used to see changes in white
or gray matter. In other body organs, such as the
breast, extremities, and liver, and in uterine le-
sions, imaging has been performed by using com-
binations of modalities such as ultrasonography
and/or T2- and T1-weighted MR imaging.

Diffusion-weighted and
Perfusion-weighted Imaging
Diffusion-weighted imaging (DWI) and perfu-
sion-weighted imaging (PWI) are used in neuro-
logic applications, such as brain tumor imaging
(67–69) and cerebral ischemia (70–72). The use
of perfusion and diffusion MR imaging tech-
niques can identify regions of abnormal brain tis-
sue after cerebral ischemia. PWI readily depicts
areas of brain with a compromised cerebral blood
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flow, whereas DWI can depict regions of ischemic
tissue that may or may not recover, depending on
the duration of reduced blood flow (73,74). By
combining PWI and DWI methods, three sce-
narios can be observed: PWI / DWI (mismatch),
PWI ! DWI (match), or DWI / PWI (reverse
mismatch) (75). For example, if PWI is larger
than DWI, then the area depicted may represent
“at risk” or penumbral tissue (76–78). Evaluation
of these tissue characteristics is important for the
targeting of therapeutic measures to maximize
clinical outcomes.

DWI has been used in other organs of the
body, for example, in the liver for demonstration
of metastatic disease and response to treatment
(79), in the uterus for monitoring treatment re-
sponse from interventional procedures such as
uterine arterial embolization (80) and high-inten-
sity focused ultrasound surgery (81), and for clas-
sification of breast lesions (82). Still larger studies
are needed to fully understand the impact that
DWI will have in these applications.

Spectroscopy
Proton spectroscopy has been used primarily for
brain applications and recently for other organs,
such as the liver, breast, prostate, and soft tissue.
The use of spectroscopy expands the repertoire of
clinical information by providing information on
intracellular metabolites, such as choline (3.2
ppm), creatine (3.0 ppm), citrate (2.6 ppm), N-
acetyl aspartate (2.02 ppm), and lactate (1.4
ppm) (6,7,83–85). (The unit “ppm” is defined as
“parts per million” and is independent of the
strength of the imaging unit.)

These metabolites are known to change in dif-
ferent pathologic conditions; for example, in
brain tumors, N-acetyl aspartate (2.02 ppm) de-
creases with a subsequent increase in choline
(6,7,85). In the breast, the presence of a choline
peak (3.2 ppm) is suggestive of malignancy
(11,12,86,87). In the prostate, MR spectroscopy
is being increasingly used in conjunction with MR
imaging to provide information on the presence
or absence of citrate (2.6 ppm) and/or choline
(3.2 ppm) (14,88). These applications will be-
come routine procedures in the near future (89).

23Na (Sodium) MR Imaging
Sodium is abundant in most tissues and is actively
pumped out of healthy cells by the Na#/H#-
ATPase pump, which maintains a large con-
centration difference across the cell membrane
at the cost of energy-rich adenosine triphosphate.
Thus, an increase in intracellular sodium concen-
tration can be a good indicator of compromised
cellular membrane integrity or impaired energy

metabolism. In the presence of tissue perfusion,
the intracellular changes and concurrent increase
in vascular or interstitial volume appear to be an
equally good indicator of cellular membrane in-
tegrity and energy metabolism.

The intracellular sodium cannot be imaged
separately from the extracellular sodium concen-
tration without toxic shift reagents or special MR
methods that cause a significant reduction in
SNR and resolution (90,91). However, the total
sodium concentration in tissue can be resolved by
using MR imaging, and there has been increased
interest in the application of sodium MR (92–98).
In particular, sodium imaging has been per-
formed in the brain (93,99), breast (95,98), heart
(100), kidney (101), and uterus (102). In recent
reports, sodium MR imaging has shown promise
in monitoring therapeutic response (96,97,103).

Beyond 3 T: Emerging High-Field-
Strength MR Imaging (7 T and Greater)
Although there have been vast technological ad-
vances in MR imaging over the past 40 years, the
central principle for advancing MR imaging tech-
nology has been based on finding ways to increase
SNR (40,41) in the MR image. The most funda-
mental approach to increasing SNR has been to
increase the field strength of the MR imaging
magnets. As a result, the impetus for improved
MR imaging has driven progressive increases in
its magnetic field strengths from fractions of a
tesla to fields of 1.5 T in the 1980s then to fields
of 3 T by the mid-1990s. The next push for in-
creasing MR imaging field strength was possible
with the advancement of superconducting tech-
nology (104–106). In the late 1990s and early
2000s, the development of a human MR imaging
unit above 4.1 T (17), in this case 8 T (44,107,
108), was achieved.

As a result of its tremendous potential (see Fig
2b), human MR imaging is currently performed
at field strengths reaching 7 T (21,43), 8 T
(44,107,108), and 9.4 T (46). The three major
MR imaging vendors—GE Healthcare, Siemens
Medical Solutions, and Philips Medical Sys-
tems—are developing 7-T whole-body human
imaging units. However, as with many scientific
breakthroughs, the potential of ultrahigh-field-
strength imaging can be achieved only if other
challenges are overcome. The most significant of
these challenges include (a) safety concerns re-
garding exceeding RF power deposition (109,
110) in tissue and (b) noninherent inhomogeneity
of MR imaging signal detection across the human
head (22,49,108,111–113).
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Conclusions
MR imaging provides a powerful tool for diagno-
sis and excellent soft-tissue contrast because the
image contrast can be finely optimized for specific
clinical questions. Moreover, novel pulse se-
quence techniques allow image contrast to be
based on tissue physiology or even cellular metab-
olism in a noninvasive manner. In addition, with
ever-increasing improvement in both hardware
and software, MR imaging may one day be used
for screening of different pathologic conditions
and provide a window into cellular metabolism
and tissue physiology.
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Page 1217 
Localization of the MR signal is obtained by applying a gradient that produces a controlled linear 
spatial variation of the B0 magnetic field (z direction), which creates small perturbations to the field 
in three directions (x, y, and z) (Fig 1). 
 
Page 1220 
The mechanism for contrast in an MR image is governed by the application of an RF pulse and, more 
important, the relaxation times of the tissue of interest, in particular T1 and T2. After the RF pulse, 
an MR signal is created. 
 
Page 1220 
T1 weighting of the image is dependent on the amount of TR in milliseconds between the slice 
selection and RF pulses and the field strength. 
 
Page 1220 
T2-weighted images are dependent on the amount of TE in milliseconds. 
 
Page 1224 
The real power of MR imaging lies in the wide range of applications for which it can be used. Current 
applications include soft-tissue delineation, determining extent of disease, tumor staging, functional 
and metabolic information, and monitoring response to treatment. 
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